

JURNAL REKAYASA SIPIL DAN LINGKUNGAN Jurnal Teoritis dan Terapan Bidang Rekayasa Ketekniksipilan dan Lingkungan

eISSN 2545-9518 Homepage: https://jurnal.unej.ac.id/index.php/JRSL/index

Terakredidasi Peringkat 5 (Keputusan Dirjen Riset dan Pengembangan Kementerian Pendidikan Tinggi, Sains, dan Teknologi RI Nomor 10/C/C3/DT.05.00/2025 tanggal 21 Maret 2025)

PEMODELAN TARIKAN PERJALANAN KENDARAAN PADA PUSAT PERBELANJAAN MODERN KABUPATEN JEMBER MENGGUNAKAN REGRESI LINIER METODE FORWARD 1

Modeling of Vehicle Travel Attractions at Modern Shopping Centers in Jember District Using Linear Regression Forward Method

Ahmad Amir Yahya ^a Akhmad Hasanuddin ^b, Tatang Maulana Maliq ^{b, 2}, Gholiqul Amrodh Alawy b, Syaripin b

- ^a Program Studi S1 Teknik Sipil, Fakultas Teknik, Universitas Jember, Jl. Kalimantan Tegalboto No.37,
- ^b Jurusan Teknik Sipil, Fakultas Teknik, Universitas Jember, Jl. Kalimantan Tegalboto No.37, Jember, 68121

ABSTRAK

Di kawasan perkotaan Kabupaten Jember terdapat lima pusat perbelanjaan modern berkonsep shopping mall yang ramai dikunjungi dan lokasinya berada pada satu kecamatan. Perkembangan pusat perbelanjaan tersebut menimbulkan tarikan perjalanan (trip attraction) yang besar karena kawasan tersebut menjadi magnet aktivitas ekonomi dan sosial masyarakat. Untuk mengetahui faktor-faktor yang memengaruhi tarikan perjalanan kendaraan pribadi yaitu sepeda motor dan mobil ke pusat perbelanjaan modern di Kabupaten Jember, maka dilakukan analisa pemodelan tarikan perjalanan menggunakan regresi linier metode forward untuk memperoleh persamaan model Regresi Linier yang terbaik. Variabel yang digunakan adalah luas lahan (X1), luas bangunan (X2), luas lahan parkir sepeda motor/mobil (X3), jumlah kios/tenant (X4), dan jumlah karyawan (X5). Hasil penelitian menunjukkan bahwa faktor yang paling berpengaruh terhadap tarikan kendaraan di pusat perbelanjaan modern Kabupaten Jember adalah luas lahan. Model regresi linier terbaik untuk tarikan kendaraan (kend/jam) untuk sepeda motor adalah Y1 = 51,851 + 0,005 X1 dangan dengan $R^2 = 0,934$, sedangkan model terbaik untuk kendaraan mobil adalah Y2 = 14,511 + 0,005 X1 dengan dengan $R^2 = 0,998X1$.

Kata kunci: Pemodelan, Tarikan Perjalanan Kendaraan, Regresi Linier Metode Forward.

ABSTRACT

In the urban area of Jember Regency, there are five modern shopping centres with a shopping mall concept that are crowded and located in one sub-district. The development of these shopping centres has created a large trip attraction because the area has become a magnet for economic and social activities in the community. To determine the factors that influence the trip attraction of private vehicles, namely motorbikes and cars, to modern shopping centres in Jember Regency, a trip attraction modelling analysis was carried out using linear regression using the forward method to obtain the best linear regression model equation. The variables used are land area (X1), building area (X2), motorcycle/car parking area (X3), number of kiosks/tenants (X4), and number of employees (X5). The results of the study showed that the most influential factor in vehicle attraction in modern shopping centres in Jember Regency is land area. The best linear regression model for vehicle traction (vehicles/hour) for motorbikes is Y1 = 51.851 + 0.005 X1 with $R^2 =$ 0.934, while the best model for cars is Y2 = 14.511 + 0.005 XI with $R^2 = 0.998XI$

Keywords: Modelling, Vehicle Travel Attraction, Linear Regression Forward Method

¹ Info Artikel: Received: 22 April 2025, Accepted: 29 Juni 2025

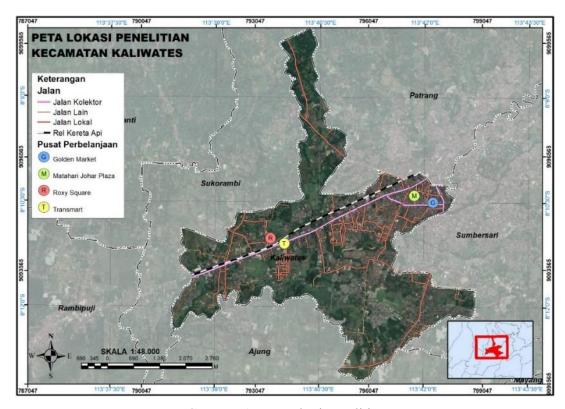
² Corresponding Author: Tatang Maulana, tatangmaulanamaliq@unej.ac.id

PENDAHULUAN

Pertumbuhan ekonomi Kabupaten Jember menurut lapangan usaha pada tahun 2022 menunjukkan peningkatan sebesar 4,53% dibandingkan tahun sebelumnya (BPS, 2023). Peningkatan ini berdampak pada meningkatnya daya beli masyarakat dan kebutuhan untuk berbelanja. Menurut Abulebu et al., (2018), kebutuhan berbelanja sangat penting untuk dipenuhi karena berperan dalam pemenuhan kebutuhan sehari-hari, sehingga mendorong tingginya aktivitas perjalanan ke pusat perbelanjaan. Apabila perencanaan terhadap aktivitas perjalanan ini tidak dilakukan dengan baik, maka akan menyebabkan peningkatan beban lalu lintas pada ruas jalan di sekitarnya, terutama pada jam sibuk dan akhir pekan. Bahkan jika akses masuk dan keluar pusat perbelanjaan tidak dirancang secara memadai, arus kendaraan di jalan akan melambat dan memicu antrean panjang (Tamin, 2000).

Di kawasan perkotaan Kabupaten Jember terdapat lima pusat perbelanjaan modern berkonsep shopping mall yang ramai dikunjungi, yaitu Lippo Plaza, Roxy Square, Golden Market, Johar Plaza, dan Transmart. Perkembangan pusat perbelanjaan tersebut menimbulkan tarikan perjalanan (trip attraction) yang besar karena kawasan tersebut menjadi magnet aktivitas ekonomi dan sosial masyarakat. Menurut Tamin (2000), tarikan perjalanan merupakan komponen penting dalam tahap awal perencanaan transportasi empat tahap, yaitu pada tahap analisis tarikan perjalanan (trip generation). Zona yang memiliki aktivitas ekonomi padat, seperti pusat perbelanjaan, biasanya menarik sejumlah besar perjalanan karena menyediakan berbagai kebutuhan dan layanan yang dibutuhkan masyarakat. Semakin tinggi intensitas kegiatan di suatu zona, maka semakin besar pula jumlah perjalanan yang ditarik ke wilayah tersebut.. Analisis tarikan perjalanan bertujuan untuk mengidentifikasi jumlah perjalanan yang dihasilkan dan ditarik oleh suatu zona dalam wilayah studi pada periode waktu tertentu. Analisis tarikan perjalanan menghasilkan sebuah model tarikan perjalanan yang dapat digunakan untuk memprediksi dampak kebutuhan transportasi berdasarkan guna lahan (Sari, 2019). Penelitian ini perlu dilakukan untuk mengetahui sejauh mana karakteristik fisik mall memengaruhi besarnya tarikan perjalanan kendaraan karena belum ada penelitian yang menghasilkan model tarikan perjalanan pusat perbelanjaan modern di Kabupaten Jember.

Penelitian terdahulu menunjukkan bahwa karakteristik pusat perbelanjaan memberikan pengaruh terhadap jumlah tarikan perjalanan. Aaqib Javed et al., (2020) dalam penelitiannya di Dhaka, Bangladesh menggunakan regresi linier metode enter menunjukkan bahwa luas bangunan, luas parkir, jumlah tenant, dan jumlah karyawan berpengaruh signifikan terhadap jumlah tarikan perjalanan. Sementara itu, Suthayana, (2010) menggunakan regresi linier metode stepwise menyatakan bahwa luas lahan dan luas parkir memengaruhi tarikan perjalanan kendaraan pada jam puncak di Kabupaten Badung, Bali. Penelitian tarikan perjalanan yang dilakukan oleh Syafi'I, dkk (2020) dengan variabel total luas lahan dan total luas bangunan menghasilkan variabel total luas bangunan yang berpengaruh terhadap tarikan perjalanan di pusat perbelanjaan di wilayah Soloraya. Oleh karena itu, Variabel-variabel yang digunakan dalam pemodelan ini meliputi luas lahan, luas bangunan, luas area parkir, jumlah tenant, dan jumlah karyawan. Pemodelan tarikan perjalanan berdasarkan jenis kendaraan pengunjung juga memungkinkan untuk disesuaikan (Muthmainnah et al., 2022). Perbedaan dimensi dan volume kendaraan antara sepeda motor dan mobil dapat mempengaruhi kebutuhan luasan area parkir. Penelitian (Pakpahan dan Roosmadianto, 2021) menunjukkan tarikan perjalanan tertinggi pada pasar di Kota Bandung terjadi pada pukul 07.00-08.00 WIB dengan jumlah jenis kendaraan paling banyak adalah sepeda motor 280 kendaraan/jam kemudian mobil 114 kendaraan/jam. (Salmannur, et al., 2017)


melakukan pemodelan tarikan perjalanan kendaraan sepeda motor pada pusat perbelanjaan di Kota Banda Aceh dengan variabel luas bangunan, luas tanah, luas lahan parkir, jumlah gerai/kios, jumlah karyawan dan jumlah kasir. Hasil yang diperoleh adalah jumlah kasir menjadi faktor yang paling berpengaruh terhadap tarikan kendaraan sepeda motor. Berbeda dengan penelitian-penelitian sebelumnya, pemodelan tarikan perjalanan pada penelitian ini dilakukan untuk masing-masing jenis kendaraan sepeda motor dan kendaraan mobil.

Tujuan penelitian adalah untuk mengetahui faktor-faktor yang memengaruhi tarikan perjalanan kendaraan pribadi yaitu sepeda motor dan mobil ke pusat perbelanjaan modern di Kabupaten Jember dan memperoleh persamaan model Regresi Linier yang terbaik. Hasil dari penelitian ini diharapkan dapat digunakan sebagai acuan dalam perencanaan fasilitas parkir dan pengelolaan dampak lalu lintas dalam pembangunan pusat perbelanjaan modern baru di Kabupaten Jember.

METODE PENELITIAN

Lokasi Penelitian

Penelitian dilakukan pada 4 (empat) pusat perbelanjaan modern di kawasan perkotaan kabupaten Jember yaitu Transmart Jember, Roxy Square Jember, Golden Market Jember, dan Johar Plaza Jember (Gambar 1). Pusat Perbelanjaan Lippo Plaza tidak digunakan sebagai sampel penelitian karena tidak semua pengunjung yang menuju Lippo Plaza bertujuan untuk mengunjungi area mall, tetapi juga untuk mengunjungi rumah sakit Siloam yang lokasinya berada dalam satu bangunan gedung dengan mall. Semua lokasi pusat perbelanjaan tersebut berada di Kecamatan Kaliwates Kabupaten Jember.

Gambar 1 Peta Lokasi Penelitian

Variabel Dan Data Penelitian

Variabel pada penelitian ini mengacu kepada penelitian yang dilakukan oleh Aaqib Javed et al., (2020) dan Suthayana, (2010). Variabel bebas yang digunakan untuk memprediksi tarikan di pusat perbelanjaan meliputi luas lahan, luas bangunan, luas parkir sepeda motor, luas parkir mobil, jumlah kios (tenant), dan jumlah karyawan.

Data primer yang digunakan untuk variable terikat adalah volume kendaraan yang parkir di area parkir pusat perbelanjaan pada jam puncak kunjungan, yaitu di hari akhir pekan (weekend) sabtu dan minggu mulai waktu beroperasinya pusat perbelanjaan pukul 10.00 sampai waktu tutup pukul 22.00 WIB. Data volume kendaraan sepeda motor digunakan sebagai variabel tarikan kendaraan sepeda motor (Y1) dan volume kendaraan mobil digunakan sebagai variabel tarikan kendaraan mobil (Y2). Data sekunder yang digunakan untuk variable bebas meliputi luas lahan (X1), luas bangunan (X2), luas lahan parkir sepeda motor/mobil (X3), jumlah kios/tenant (X4), dan jumlah karyawan (X5) sebagai variabel bebas.

Analisis Data

Analisis regresi linier metode forward dengan alat bantu perangkat lunak SPSS digunakan sebagai metode analisis data pada penelitian ini. Tahapan-tahapan dalam proses pembentukan persamaan model dengan analisis regresi linier metode forward melalui perangkat lunak SPSS meliputi uji korelasi, uji normalitas, regresi linier metode forward, uji multikolinearitas, heteroskedastisitas, uji F, dan uji-t (Field. A, 2013).

Uji Korelasi

Uji korelasi pada metode forward digunakan untuk melihat hubungan antara variabel bebas dan variabel terikat, guna memilih variabel bebas yang paling relevan dimasukkan ke dalam model regresi. Namun, korelasi hanya menunjukkan hubungan, bukan sebab-akibat, sehingga variabel yang berkorelasi tinggi belum tentu signifikan dalam regresi berganda. Interpretasi nilai koefisien korelasi mengacu pada Sugiyono (2013) yang ditampilkan pada Tabel 1.

Tabel 1 Interpretasi Nilai Koefisien Korelasi (R)

Koefisien Korelasi	Interpretasi
0	Tidak berkorelasi
0,01-0,20	Sangat rendah
0,21-0,40	Rendah
0,41 - 0,60	Agak rendah
0,61-0,80	Cukup
0,81 - 0,99	Tinggi
1	Sangat tinggi

Sumber: (Sugiyono, 2013:231)

Uji Normalitas

Uji normalitas menggunakan uji Kolmogorov-Smirnov atau Shapiro-Wilk. Jika nilai signifikansi > 0,05 maka variabel penelitian dinyatakan terdistribusi normal, sedangkan jika nilai signifikansi < 0,05 variabel penelitian dinyatakan tidak berdistribusi normal (Widana & Muliani, 2020).

Regresi Linier Metode Forward

Variabel bebas ditentukan dengan melihat dampak signifikan terhadap variabel terikat dan layak dimasukkan ke dalam model. Variabel bebas yang tidak berpengaruh secara signifikan terhadap variabel terikat akan dieliminasi/dikeluarkan dari model. Variabel bebas dianggap memiliki pengaruh signifikan terhadap variabel terikat jika nilai signifikansi < 0,05 (Field. A, 2013).

Uji Multikolinieritas

Uji ini mendeteksi korelasi tinggi antar variabel bebas. Gejala multikolinearitas terjadi jika toleransi < 0,1 atau VIF > 10,00, yang bisa mengurangi akurasi model (Mardiatmoko, 2020).

Uji Heteroskedastisitas

Menggunakan Uji Glejser untuk menilai variasi residual dalam model. Jika p-value > 0,05, model tidak mengalami heteroskedastisitas (Mardiatmoko, 2020).

Uji F dan Uji-t

Uji F mengevaluasi pengaruh serentak variabel bebas terhadap variabel terikat. Jika p-value < 0,05, variabel bebas signifikan. Uji-t menilai signifikansi koefisien regresi variabel bebas secara parsial. Jika p-value < 0,05, variabel bebas berpengaruh pada variabel terikat (Mardiatmoko, 2020).

HASIL DAN PEMBAHASAN

Model Regresi Linier Tarikan Kendaraan Sepeda Motor

Data primer dan sekunder yang akan digunakan untuk pemodelan tarikan sepeda motor pada pusat perbelanjaan modern Kabupaten Jember dapat dilihat pada Tabel 2.

Tabel 2 Data Pemodelan Tarikan Kendaraan Ser	oeda Motor Pada	Pusat Perbelaniaan Modern
---	-----------------	---------------------------

Pusat Perbelanjaan	Jumlah Sepeda Motor (kend./jam) (Y1)	Luas lahan (m²) (X1)	Luas bangunan (m²) (X2)	Luas parkir sepeda motor (m²) (X3)	Jumlah kios/ tenant (X4)	Jumlah karyawan (orang) (X5)
Transmart Jember	60	12432	27008	420	20	472
Roxy Square Jember	436	70000	50000	1350	65	970
Golden Market Jember	123	3720	6687	250	20	266
Johar Plaza Jember	79	5078	11724	300	56	377

Tarikan kendaraan sepeda motor pada pusat perbelanjaan Roxy Square jumlahnya yang tertinggi di antara pusat perbelanjaan modern di Kabupaten Jember, sesuai dengan nilai tertinggi pada karakteristik fisik seperti luas lahan, bangunan, parkir, jumlah kios, dan karyawan. Ini mengindikasikan adanya pengaruh secara linier antara minat pengunjung dan karakteristik mall. Namun, perbandingan antara Transmart dan Johar Plaza menunjukkan bahwa karakteristik fisik tidak selalu mencerminkan jumlah pengunjung.

Hasil uji korelasi pada tabel 3 menunjukkan bahwa luas lahan (X1), luas bangunan (X2), luas parkir sepeda motor (X3), dan jumlah karyawan (X5) memiliki korelasi tinggi terhadap tarikan sepeda motor (Y1), sedangkan jumlah tenant (X4) menunjukkan korelasi yang cukup. Nilai korelasi tinggi menunjukkan tingkat hubungan yang kuat antara variabel bebas

dengan variabel terikat. Namun, nilai korelasi tidak selalu berarti sebab-akibat (Sugiyono, 2013). Untuk mengetahui hubungan sebab-akibatnya dilihat dari hasil uji-t.

Tabel 3 Hasil Uji Korelasi Tarikan Kendaraan Sepeda Motor Pada Pusat Perbelanjaan Modern

Korelasi Tarikan Sepeda Motor											
	Y1	X1	X2	Х3	X4	X5					
Y1	1	0,967	0,828	0,961	0,665	0,912					
X1	0,967	1	0,943	0,999	0,660	0,985					
X2	0,828	0,943	1	0,948	0,536	0,976					
X3	0,961	0,999	0,948	1	0,668	0,989					
X4	0,665	0,660	0,536	0,668	1	0,680					
X5	0,912	0,985	0,976	0,989	0,680	1					

Setelah dilakukan uji korelasi selanjutnya dilakukan uji normalitas untuk memastikan variabel penelitian yang dilakukan berdistribusi normal. Variabel penelitian harus berdistribusi normal dalam pemodelan analisis regresi karena asumsi ini memastikan bahwa estimasi parameter regresi, uji signifikansi, dan interval prediksi menjadi valid dan akurat.

Tabel 4 Hasil Uji Normalitas Tarikan Sepeda Motor Menggunakan SPSS

		Unstd. Residual
N		4
Normal Parameters ^{a,b}	Mean	.0000000
	Std. Deviation	45.17238997
Most Extreme Differences	Absolute	.249
	Positive	.182
	Negative	249
Kolmogorov-Smirnov Z		.497
Asymp. Sig. (2-tailed)		.966

Berdasarkan hasil uji normalitas pada Tabel 4, diperoleh hasil nilai signifikansi 0,966 > 0,05 yang artinya semua variabel untuk pemodelan tarikan perjalanan sepeda motor berdistribusi normal dan dapat digunakan untuk tahap selanjutnya yaitu analisis regresi linier.

Tabel 5 Hasil Eliminasi Variabel Bebas

Model	Variables Entered	Variables Removed	Method
1	Luas Lahan		Forward Method (Criterion: Probability-of-F-to-enter <= 0,05)

a. Dependent Variable: Tarikan Kendaraan Motor

Tabel 6 Hasil pemodelan tarikan perjalanan sepeda motor

				Std. Error	Change	e Statisti	cs		
			Adjusted	of the	R Square				Sig. F
Model	R	R Square	R Square	Estimate	Change	F Change	df1	df2	Change
1	.967ª	.934	.902	55.32465	.934	28.471	1	2	.033

a. Predictors: (Constant), Luas Lahan

Tabel 7 Hasil uji-T variabel terpili

Unstd. Coeff		. Coeff	Std. Coef.			Co	orrelations	S	Collinea Statist	•	
			Std.				Zero-				
Mo	del	В	Error	Beta	T	Sig.	order	Partial	Part	Tolerance	VIF
1	(Constant)	51.851	35.966		1.442	.286					
	Luas Lahan	.005	.001	.967	5.336	.033	.967	.967	.967	1.000	1.000

a. Dependent Variable: Tarikan Kendaraan Motor

Tabel 8 Hasil uji-T variabel yang dieleminasi

						Colli	nearity Stat	istics
					Partial			Minimum
Mo	del	Beta In	t	Sig.	Correl.	Tolerance	VIF	Tolerance
1	Luas Bangunan	751 ^b	-4.663	.134	978	.111	8.997	.111
	Luas Area Parkir Motor	-8.555 ^b	-1.570	.361	843	.001	1567.363	.001
	Jum. Tenant	$.048^{b}$.143	.909	.142	.564	1.772	.564
	Jum. Karyawan	-1.401 ^b	-2.550	.238	931	.029	34.491	.029

a. Dependent Variable: Tarikan Kendaraan Motor

Hasil analisis dengan regresi linier metode forward menghasilkan satu variabel bebas yaitu luas lahan (X1) yang layak digunakan untuk pemodelan tarikan sepeda motor karena mempunyai nilai *probability* < 0,05 yang ditunjukkan pada Tabel 5, dengan nilai probabilitas 0,033 dan nilai tingkat kepercayaan (R²) 0,934 yang ditunjukkan pada Tabel 6. Hasil uji-T dari metode forward pada Tabel 7 juga menunjukkan bahwa hanya variabel luas lahan (X1) yang berpengaruh terhadap variabel terikat karena nilai p-value 0,033< 0,05 dengan nilai konstanta model adalah 51,851, sedangkan variabel X2, X3, X4, X5 tidak berpengaruh karena nilai p-value > 0,05 yang ditunjukkan pada Tabel 8. Karena hanya terdapat satu variabel bebas, maka tidak perlu dilakukan uji multikolinearitas dan uji F. Kemudian dilanjutkan dengan uji heteroskedastisitas untuk mengetahui bahwa variabilitas residual konsisten di seluruh rentang nilai variabel independen, sehingga estimasi parameter regresi menjadi lebih efisien dan hasil analisis lebih dapat diandalkan.

Tabel 9 Hasil uji heteroskedastisitas tarikan sepeda motor menggunakan SPSS

		Unstd. Coef.		Std. Coef.			
Mode	el	В	Std. Error	Beta		t	Sig.
1	(Constant)	38.694	21.363			1.811	.212
	Luas Lahan	.000	.001		433	678	.567

a. Dependent Variable: ABS RES

Hasil uji heteroskedatisitas pada Tabel 9 menunjukkan bahwa variabel luas lahan (X1) dapat diandalkan untuk menjadi varabel bebas dalam pemodelan tarikan perjalanan sepeda motor karena nilai p-value 0,567> 0,05. Sehingga model regresi linier yang diperoleh adalah Y1 = 51,851 + 0,005X1 dengan $R^2 = 0,934$ atau 93,4% yang ditunjukkan pada Tabel 7.

Hasil regresi linier metode forward menunjukkan bahwa hanya X1(luas lahan) yang berpengaruh terhadap tarikan kendaraan mobil dengan model dengan persamaan Y1 = 51,851 + 0,005X1. Pengertian nilai konstanta 51,851 adalah model ini dapat digunakan untuk memprediksi tarikan sepeda motor jika jumlahnya melebihi 51 kendaraan/jam, dan

b. Predictors in the Model: (Constant), Luas Lahan

koefisien X1 memiliki pengertian setiap penambahan 1 m² luas lahan mall, akan meningkatkan jumlah perjalanan sepeda motor sebanyak 0,005 kendaraan/jam.

Model Regresi Linier Tarikan Mobil

Roxy Square Jember

Johar Plaza Jember

Golden Market Jember

Data primer dan sekunder yang akan digunakan untuk pemodelan tarikan mobil pada pusat perbelanjaan modern Kabupaten Jember dapat dilihat pada Tabel 10.

Variabel dan Data Tarikan Kendaraan Mobil											
Pusat Perbelanjaan	Jumlah Mobil (kend./jam)	Luas lahan (m²)	Luas bangunan (m²)	Luas parkir mobil (m²)	Jumlah tenant	Jumlah karyawan (orang)					
	(Y2)	(X1)	(X2)	(X3)	(X4)	(X5)					
Transmart Jember	66	12432	27008	880	20	472					

50000

6687

11724

18350

600

550

65

20

56

970

266

377

70000

3720

5078

336

40

34

Tabel 10 Data Pemodelan Tarikan Kendaraan Mobil Pada Pusat Perbelanjaan Modern

Data jumlah mobil dan karekteristik pusat perbelanjaan pada Tabel 10 menunjukkan bahwa luas lahan, luas bangunan dan luas parkir mempengaruhi jumlah kendaraan mobil yang tertarik ke lokasi pusat perbelanjaan. Semakin luas ukuran lahan, bangunan dan area parkir maka jumlah kendaraan mobil pengunjung juga semakin banyak.

Tabel 11 Hasil Uji Korelasi Tarikan Kendaraan Mobil Pada pusat Perbelanjaan Modern

Korelasi Tarikan Mobil								
	Y2	X1	X2	Х3	X4	X5		
Y2	1	0,999	0,931	0,996	0,650	0,977		
X1	0,999	1	0,943	0,994	0,660	0,985		
X2	0,931	0,943	1	0,900	0,536	0,976		
X3	0,996	0,994	0,900	1	0,692	0,965		
X4	0,650	0,660	0,536	0,692	1	0,680		
X5	0,977	0,985	0,976	0,965	0,680	1		

Tabel 12 Hasil Uji Normalitas Tarikan Mobil Menggunakan SPSS

		Unstandardized Residual
N		4
Normal Parameters ^{a,b}	Mean	.0000000
	Std. Deviation	.00000000
Most Extreme Differences	Absolute	.326
	Positive	.326
	Negative	243
Kolmogorov-Smirnov Z		.652
Asymp. Sig. (2-tailed)		.789

Setelah dilakukan uji korelasi yang ditunjukkan pada Tabel 11, luas lahan (X1), luas bangunan (X2), luas lahan parkir mobil (X3) dan jumlah karyawan (X5) memiliki nilai korelasi yang tinggi terhadap tarikan mobil (Y2). Sedangkan jumlah tenant (X4) memiliki nilai korelasi yang cukup terhadap tarikan mobil (Y2). Hasil uji normalitas yang telah

dilakukan pada Tabel 12 menunjukkan hasil uji normalitas dengan nilai signifikansi 0,789 > 0,05 yang artinya data penelitian berdistribusi normal. Setelah dilakukan uji normalitas maka selanjutnya dilakukan uji regresi metode forward dengan mengeliminasi variabel bebas yang mempunyai probability > 0,05 untuk mengetahui variabel bebas apa saja yang dapat dimasukkan ke dalam model.

Tabel 13 Hasil Eliminasi Variabel Bebas Untuk Pemodelan Tarikan Mobil

		Variables	
Model	Variables Entered	Removed	Method
1	Luas Lahan		. Forward (Criterion: Probability-of-F-to-enter <= ,050)
2	Jumlah Karyawan		. Forward (Criterion: Probability-of-F-to-enter <= ,050)

a. Dependent Variable: Tarikan Kendaraan Mobil

Tabel 14 Hasil pemodelan tarikan perjalanan mobil

				Std. Error Change Statistics					
			Adjusted	of the	R Square				Sig. F
Model	R	R Square	R Square	Estimate	Change	F Change	df1	df2	Change
1	.999ª	.998	.997	7.61921	.998	1089.497	1	2	.001
2	1.000^{b}	1.000	1.000	.80629	.002	177.596	1	1	.048

a. Predictors: (Constant), Luas Lahan

Tabel 14 menunjukkan bahwa variabel luas lahan (X1) dan jumlah karyawan (X5) dapat dimasukkan ke dalam model regresi linier metode forward, karena memiliki nilai signifikansi < 0,05. Variabel lain tidak dimasukkan karena nilai probabilitasnya > 0,05, sebagaimana dibuktikan melalui uji-t.

Selanjutnya dilakukan uji multikolinearitas untuk mendeteksi tingkat korelasi antara X1 dan X5, guna menghindari ketidakstabilan koefisien regresi yang dapat mengurangi akurasi model.

Tabel 15 Hasil Uji Multikolinieritas Tarikan Mobil

Model	Collinearity Statistics					
	Tolerance	VIF				
Luas lahan (X1)	0,029	34,491				
Jumlah karyawan (X5)	0,029	34,491				

Tabel 14 menunjukkan nilai tolerance 0,029 (< 0,10) dan VIF 34,491 (> 10), yang mengindikasikan adanya multikolinearitas kuat antara variabel X1 dan X5, sehingga keduanya tidak dapat digunakan bersama dalam model regresi linier. Maka dipilih variabel yang memiliki pengaruh/korelasi tertinggi dengan variabel terikat berdasarkan hasil uji korelasi untuk membentuk model regresi, yaitu luas lahan (X1).

Tabel 16 menunjukkan variabel luas lahan (X1) memiliki nilai uji-t sebesar 33,008 dengan signifikansi 0,001 (< 0,05), artinya berpengaruh signifikan terhadap tarikan mobil (Y2). Sementara variabel X2, X3, dan X4 tidak dimasukkan ke model karena nilai signifikansi > 0,05. Variabel jumlah karyawan (X5) sebenarnya signifikan (0,048 < 0,05), namun dikeluarkan karena mengalami multikolinearitas dengan X1.

b. Predictors: (Constant), Luas Lahan, Jumlah Karyawan

Tabel 16 Hasil Uii-T variabel yang berpengaruh

	3	•	U	1	U	
Star diz						
uiz	ea					

				Standar							
				dized							
										~ 111	
		Unstand	ardızed	Coeffici						Collin	earity
		Coeffi	cients	ents			Coı	relation	1S	Statis	stics
			Std.				Zero-	Parti		Tolera	
Mo	odel	В	Error	Beta	t	Sig.	order	al	Part	nce	VIF
1	(Constant)	14.511	4.953		2.930	.099					
	Luas Lahan	.005	.000	.999	33.008	.001	.999	.999	.999	1.000	1.000

a. Dependent Variable: Tarikan Kendaraan Mobil

Tabel 17 Hasil Uji-T Variabel yang Tidak Masuk Model Tarikan Mobil

					Partial	Collinearity Statist		
					Correlatio			Minimum
Model		Beta In	t	Sig.	n	Tolerance	VIF	Tolerance
1	Luas Bangunan	101 ^b	-1.289	.420	790	.111	8.997	.111
	Luas Area Parkir Mobil	.283 ^b	1.070	.478	.731	.012	82.008	.012
	Jumlah Tenant	017 ^b	316	.805	302	.564	1.772	.564
	Jumlah Karyawan	251 ^b	-13.327	.048	997	.029	34.491	.029

a. Dependent Variable: Tarikan Kendaraan Mobil

Tabel 18 Hasil Uji Heteroskedastisitas Tarikan Mobil Menggunakan SPSS

Standard Unstandardized Coefficients Coeffici						
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	6.493	1.482		4.381	.048
	Luas Lahan	-8.207E-5	.000	813	-1.976	.187

a. Dependent Variable: ABS RES

Tabel 18 menunjukkan hasil uji heteroskedastisitas dengan metode Glejser untuk menilai apakah varians residual berbeda-beda di antara seluruh pengamatan dalam model regresi (Mardiatmoko, 2020). Diperoleh hasil nilai signifikansi 0,187 > 0,05 yang artinya tidak terjadi gejala heteroskedastisitas dan variabel luas lahan (X1) dapat diandalkan untuk menjadi variabel bebas dalam pemodelan tarikan perjalanan mobil.

Hasil regresi linier metode forward menunjukkan bahwa hanya X1 (luas lahan) yang berpengaruh terhadap tarikan kendaraan mobil dengan model dengan persamaan Y2 = 14,511 + 0,005X1 dan $R^2 = 0,998$ yang ditunjukkan pada Tabel 16. Pengertian nilai konstanta 14,511 adalah model ini dapat digunakan untuk memprediksi tarikan mobil jika jumlahnya melebihi 14 kendaraan/jam, dan koefisien X1 memiliki pengertian setiap penambahan 1 m² luas lahan mall, akan meningkatkan jumlah perjalanan kendaraan mobil sebanyak 0,005 kendaraan/jam.

b. Predictors in the Model: (Constant), Luas Lahan

c. Predictors in the Model: (Constant), Luas Lahan, Jumlah Karyawan

d. Predictors in the Model: (Constant), Luas Lahan, Jumlah Karyawan, Jumlah Tenant

Model tarikan kendaraan yang dihasilkan pada penelitian ini hampir sama dengan model tarikan kendaraan hasil penelitian dari Suthayana, (2010), yaitu variabel luas lahan dan luas parkir memengaruhi tarikan perjalanan kendaraan pada jam puncak di Kabupaten Badung, Bali. Tetapi terdapat perbedaan dengan penelitian yang dilakukan oleh Syafi'I, dkk (2020), variabel total luas bangunan yang berpengaruh terhadap tarikan perjalanan di pusat perbelanjaan di wilayah Soloraya. Penelitian yang dilakukan oleh (Meena & Patil, 2022) tentang bangkitan perjalanan untuk pusat perbelanjaan di kawasan Metropolitan Mumbai India juga menemukan bahwa luas bangunan adalah variabel yang dominan.

KESIMPULAN

Faktor yang berpengaruh terhadap tarikan kendaraan di pusat perbelanjaan modern Kabupaten Jember adalah luas lahan. Model regresi linier terbaik untuk memprediksi tarikan kendaraan (kend/jam) untuk sepeda motor adalah Y1 = 51,851 + 0,005 X1, sedangkan untuk kendaraan mobil adalah Y2 = 14,511 + 0,005 X1 dengan X1 adalah luas lahan pusat perbelanjaan. Koefisien positif 0,005, menandakan bahwa setiap penambahan luas lahan mall akan meningkatkan jumlah perjalanan motor maupun mobil secara proporsional. Model ini dapat digunakan untuk perencanaan pembangunan pusat perbelanjaan modern di Kabupaten Jember karena memiliki tingkat kepercayaan > 90%.

DAFTAR PUSTAKA

- Aagib Javed, S., Debnath, M., & Anwar, A. (2020). "Estimation of Trip Attraction Rates and Models for Shopping Centers in Dhaka City". MAT Journals, 5(1), 28-34. https://doi.org/10.5281/zenodo.3733088
- Abulebu, H. I., Tanari, B., & Ramli, M. I. (2018). "Trip attraction model of central market in Poso City based on multiple linear regression model". MATEC Web of Conferences, 181, 1–9. https://doi.org/10.1051/matecconf/201818102008
- BPS. (2023). Kabupaten Jember Dalam Rangka Jember Regency in Figures 2023.
- Breski, D. Malkovic, B. Senjak, M. (2025). "Trip Generation Models for Transportation Impact Analyses of Shopping Centers in Croatia". Multidisciplinary Digital **Publishing** Institute (MDPI) of infrastructures, iournal 10, https://doi.org/10.3390/infrastructures10040085
- Field, A. (2013). Discovering Statistics Using IBM SPSS Statistics (4th ed.). SAGE **Publications**
- Harahap, M. F., & Putra, R. P. (2019). "Analisis kebutuhan parkir pada pusat perbelanjaan di Kota Medan". Jurnal Teknik Sipil, 8(2), 145-153.
- Mardiatmoko, G.-. (2020). "Pentingnya Uji Asumsi Klasik Pada Analisis Regresi Linier Berganda". BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 14(3), 333–342. https://doi.org/10.30598/barekengvol14iss3pp333-342
- Meena, S., & Patil, G. R. (2022). "Trip Generation for shopping malls in Developing Cities". European Transport, Issue 86, No. 2. https://doi.org/10.48295/ET.2022.86.2
- Muthmainnah, M., Fauzan, M., Lestari, Y., & Fithra, H. (2022). "Pemodelan Pergerakan Kendaraan Pada Guna Lahan Perdagangan Dan Jasa". Malikussaleh Journal of Mechanical Science and Technology, 14. 6(2),https://doi.org/10.29103/mjmst.v6i2.7080
- Nurhadi, M. (2018). "Evaluasi kinerja lalu lintas di kawasan pusat perbelanjaan". Jurnal Transportasi, 18(2), 103–112.

- Pakpahan, H.M., Roosmadianto, G.A. (2021). "Model Bangkitan dan Tarikan Perjalanan Kendaraan Pada Pasar Di Kota Bandung". Jurnal Manajemen Logistik dan Transportasi, 7(2), 92-107.
- Salmannur, A., Isya, M., Anggraini, R. (2017). "Model Tarikan Pergerakan Sepeda Motor Pada Pusat Perbelanjaan (Studi Kasus: Di Kota Banda Aceh), Jurnal Teknik Sipil, 6(3), 251-260
- Sari, N. (2019). "Analisis Faktor Faktor yang Mempengaruhi Tarikan Perjalanan Menuju Mall Transmart Carrefour". Jurnal Rekayasa, 23(1).
- Sugiyono. (2013). Metode Penelitian Pendidikan (Pendekatan Kuantitatif, Kualitatif dan R&D). Alfabeta, Bandung.
- Suthanaya, P. A. (2010). "Pemodelan Tarikan Perjalanan Menuju Pusat Perbelanjaan Di Kabupaten Badung, Provinsi Bali". Jurnal Ilmiah Teknik Sipil, 14(2), 103–112.
- Syafi'i, Legowo, S. J., & Kholis, M. N. (2020). "Analisis Pemodelan Tarikan Pergerakan Department Store (Studi Kasus di Wilayah Soloraya)". Matriks Teknik Sipil, 8(1). https://doi.org/10.20961/mateksi.v8i1.41531.
- Tamin, O. Z. (2000). Perencanaan dan pemodelan transportasi. Bandung: Institut Teknologi Bandung.
- Widana, W., & Muliani, P. L. (2020). Uji Persyaratan Analisis. In Klik Media.